Drexel University
College of Engineering

Division of Management and Technology
Department of Engineering Technology

MET 205 Robotics and Mechatronics
Lab 4 Robot ABB IRB 120

Objective:
1. To learn the basics of a robot (ABB IRB 120)
2. To learn about the robot controller.
3. To learn to teach points.
4. To write a simple program.

Introduction

The IRB 120 is one of ABB Robotics generation of 6-
axis industrial robots designed specifically for
manufacturing industries that use flexible robot based
automation. The robot has an open structure that is
especially adapted for flexible use, and can
communicate extensively with external systems.

Operating system

The robot is equipped with the IRC5 controller and
robot control software, RobotWare for M2004.
RobotWare supports every aspect of the robot system,
such as motion control, development and execution of
application programs, communication etc. See
Product specification - Controller IRC5 with
FlexPendant. Safety standards require a controller to
be connected to the robot. For additional
functionality, the robot can be equipped with optional
software for application support - for example
communication features - network communication -
and advanced functions such as multitasking etc.

System Description of ABB IRB 120/Articulated:
Understanding the FlexPendant application life cycle
improves your ability to design and debug the
application. IRC5 is ABB’s new generation robot
controller. Virtual robot technology makes it possible
to run a virtual IRC5 controller, virtual mechanical
units and a virtual FlexPendant on the desktop.
FlexPendant is ABB’s new generation hand-held
device, used with the IRC5 robot controller. It is
developed with Microsoft’s latest technology for
embedded systems, Windows CE and .NET Compact
Framework. The FlexPendant is a “smart device” in
the .NET vocabulary, i.e. a complete computer in
itself with its own processor, operating system etc.

I T [Manual Guard Stop

[l]) Sys 508 D1GHSEVST-W-0002130) Stopped (Speed 100%)
C\Q Hello Wiorld t‘:. Backup and Restore
fir Hotedit &7 calibration
‘ﬁ Inputs and Outputs j‘;:’ Control Panel
._‘f:'-’_;a Jagging %] Event Log
%l Production Window . FlexdPerdant Explorer
'%Fl Program Editor \:;LI Systemn Info
5_}' Program Data
_J Lag Off @ Restart

N

4 Hard keys for fast access

IRCS5 — FlexPendant

Graphical color touch screen

3-way Joy Stick

4 Hard keys for running programs
Start

Execute Backward/Forward

oA D 13 s et
Soma s b 5
YHFCY Y

The enabling device is a pressure switch with three
positions

The switch must be in the middle position in order to
activate the motors

All root movement will immediately stop if the
switch is released or pressed to the bottom

Enabling device

Saving a program

A folder with the program name is created
Madule: MainModule

File extension: paf is an XML file that points to the Main Module and all other

program modules (.mod).

* E:\MewProgramName
File Ecit View Favorites Tools Help

The same =
name hddress |0 E:\NewProgramhame
"MR [IMainModule.mod
“~u |2IModuleA.mod
(2] MewProgramName.pgf

| Mechanical Unit
Increment

Run Mode

Step Mode
Speed

Tasks

Qbek - Q @ Dsech i Folders [3 X ¥ [~
" ~ 86

Saving and Loading a program
To create a new program or load an existing program or save a program:

A

Tap ABB
Tap Program Editor

W Program tditor |
Tasks and Prograse

Tap Tasks and Programs Normal
Tap File
Tap New Program:

To create a new program

Tap Load Program:
To load an existing program

Tap Save Program as: File '|

To save a program

IRC5 Program File structure

Folder NewTask Name
__Active RAM__

MainModule. mod

Fm.s MainModule
Data Declations: Tool Data,

|
Robtargot data |
|

MaduleA.mod

MODULE Moduleh |
Data Declations: Tool Data,
£ N |

Robtacget data
PROC RoutinsAl ()

‘ PROC main|)
Moval p3

Toeld;

Movel ps,

I = | EsoeRec

PRUC Routdnmel ()
. Hovel pl, ¥100D0, %10, Toolld; |
ENDEROC

PROC Routinel()

[Movel p2, v1000, 10, Tooll;

| | wwenoc

Create a program

To Create a new program: (If no program exists)

Tap ABB

Inserting Move Instructions

To add instructions to your program:
Tap Add Instruction

Tap Program Editor

Jog robot into position

Select Robot Task
Tap New.

Tap Moved or Movel

Inserting Move Instructions/ABBI8I = e . r—

l B3|

Bt wrpe schtarg Comvast Vanh: T_RON1

To name the position.
Double tap the % and press new.

Change the name by pressing

Velocity and Zones

the ... Box then use the key

board to give the position a

unigue name for the position

jog the robot to the next position
and repeat.
Booo0opoooeaEs
FEEEEEEE G R
E2000on0nooaan
EioooonooAnncIl
w IR IHGIEE=
= FaYy by o
Changing a data Modifying a Position
[T D)) e e 3 A
Select itemn to - Step !o‘the maove to I\":m ' T_ROBL/ MainMotkie, main
change by double e be modified. | Tliel-llm‘ | Medubes. - Routines -l
Tapping. . PROC main ()
S il Active Fiter: Jog the robot to the | MoveJ pl0, v1000, z50, toolDd;
I el ¥ 5 Wl GO0 'm, SN0 new position, |8 Moved , vioop, =50, toold;
E= Moved p30, v1000, z50, toelDd:
;hen c’:_'ILoose agr:(w Tap) Moved pd0, w1000, =50, toolD;
ata a ress A .
£ £ Modify Pasition i e
b B A e T et e
1 v

Debug

Checking Robot Calibration

MoveAbsJ
Create a new routine (GotoCalib)
Insert MoveAbs.J instruction

Choose the asterisk position and then push Debug / View Value,
put all 6 axis to zero.

(LY T r————_) £
P e vaken
[)
| T o et i .I rfale ._i
Poamn | W |
pinttargt LT, ER000,08, 7L |5 -8 0. | Ll (85 7 |
pur-eeery o0, 0,000] = 3 1 @
2] L] - (a3
rax 3= o
e o L=
(-3 ol
e K2 i

Stepping Instruction by Instruction

In Manual Mode, the routine may be executed step-by-step Line by Line
forwards or backwards.

[% Manuai Motors On m_
[A"I Im_um_.mu—.: Stopped (speed 100%)
T Mew in T_ROBL/ main o
Tasks and Programs | Modules >| Routines |
4 CONST robtarget P =3| pe to Main PP to Cursor
5 CONST robtarget A o0 1o Routine. || Cusrsoe to PP
. PROC main() Cursor to MP Go to position
7 Moved pl0, v1000, P ol ol fibik:
T MoveJ , v1c$
Program View Value Check Program
Pointer (PP) _..e) MoveJ p30, v1000~ = — |
1 “Mﬂ“
10 MoveJ p40, v1000,
11 ENDPROC
12| ENDMODULE
Add - s v ﬁ' M
Instruction e | Debud | position Dedarations
)
Move Instructions
[T OE pr—— - X
e —Er
PROC main ()
MoveJ pHome, v1000, ©10, toold;
MovelL pl0, vi000, fine, teoll;
MoveL p20, vi000, fine, tesl0;
MoveL p30, vi000, fine, teooll; © position in air
mMovel pd0, vi000, fine, mm,j X position on paper
| BEgomgmEn | EOBOY
s| ENDFROC -
IR IS pes

Some Common Commands:-
1. MOVE Statement:

MoveC Moves along a circular path

MoveJ Joint movement

MoveL Moves along a linear path
MoveAbsJ Absolute joint movement

2. SPEED Statement

There are a number of dedicaled motion buttons on the FlexPendant

Pragrammatile Bitton 1. How 1o deling 28 lunchan is
ditailad n the Pocket Guide,

Pragrammabile button 2. How 1o defne ils functon is
detailud i the Pocket Guide

Programmatia bution 3. How o deline its unction is
detadad in the Pockal Guids

Programmable button 4. How 1o dalineg ils funchon is
datadad in e Pockat Guids

RUN button, Starts program execulion.
STEP BACKWARDS button. Staps the program ane
instruction backwards

STEP FORWARDS button. Steps the program ane
instruction lorwards

P0G © O

STOP button, Siops the program execution.

Syntax: V<expression>: The velocity of the tool center point is expressed in mm/s (in the object coordinate

system).

Requirements: 1. Create a simple program as described in the handout. Test your program for robotic calibration in

XYZ coordinate.

2. Gently but firmly mount a pencil or marker on the robot gripper. Jog the robot to a position in
which the pencil point touches a corner point of a square 50mm x 50mm. Move the robot to all the
corner points (actual) using FlexPendant. Record the positions (X, Y, Z) the robot moves.

3. Try four different speeds: 125, 250, 500, and 1000 mm/s with Zone = 0 for running the program
and record the cycle time for each test.

4. Plot a graph of cycle time vs. speed (mm/s).
5. Address the difference between the actual cycle time and the calculated cycle time.

